dbt Data Modeling Pattern

data_engineering
SQL
architecture
mentor
Remix

Dimensional data model using dbt with proper testing and documentation.

12/8/2025

Prompt

dbt Data Modeling Pattern

Create a dimensional data model using dbt with medallion architecture for [Business Domain].

Architecture Layers

1. Bronze Layer (Staging Models)

  • Source data with minimal transformation
  • models/staging/
  • Clean column names, data types
  • Light validation

2. Silver Layer (Intermediate Models)

  • models/intermediate/
  • Cleaned and joined data
  • Business logic applied
  • Deduplication and quality checks

3. Gold Layer (Mart Models)

  • models/marts/
  • Business-ready dimensional models
  • Fact tables - Metrics and transactions
  • Dimension tables - Descriptive attributes

dbt Best Practices

SQL Patterns

  • Use CTEs (Common Table Expressions)
  • Follow DRY principle (Don't Repeat Yourself)
  • Use {{ ref() }} for model dependencies
  • Use {{ source() }} for raw data

Testing

Schema Tests

  • unique - No duplicate values
  • not_null - Required fields
  • relationships - Foreign key integrity
  • accepted_values - Enum validation

Data Tests

  • Custom business logic tests
  • Validate calculations
  • Check data quality metrics

Documentation

YAML Files

  • Model descriptions
  • Column-level documentation
  • Test definitions
  • Metadata and tags

Macros

  • Create reusable logic
  • DRY code across models
  • Custom functions

Deliverables

Folder Structure

models/
├── staging/
│   └── stg_[source]__[table].sql
├── intermediate/
│   └── int_[entity]__[description].sql
└── marts/
    ├── core/
    │   ├── fct_[entity].sql
    │   └── dim_[entity].sql

Code Samples

  • At least one model from each layer
  • Complete with tests and documentation
  • Production-ready SQL

Tags

dbt
data-modeling
analytics
testing

Tested Models

gpt-4-turbo
claude-3-5-sonnet

Comments (0)

Sign in to leave a comment

Sign In
dbt Data Modeling Pattern | vibeprompt.directory