LangChain RAG Agent with Memory
ai_agents
TypeScript
architecture
mentor
Retrieval-Augmented Generation agent with conversation memory and source citations.
By sophia_m
12/8/2025
Prompt
LangChain RAG Agent with Memory
Build a Retrieval-Augmented Generation (RAG) agent using LangChain.
Components
1. Document Loading & Chunking
- Load documents from various sources
- Use
RecursiveCharacterTextSplitter - Optimal chunk size (e.g., 1000 chars with 200 overlap)
2. Vector Store
- Options: Pinecone, Chroma, Weaviate
- Store document embeddings
- Efficient similarity search
3. Embeddings
- Options: OpenAI, HuggingFace
- Convert text to vectors
- Consistent embedding model
4. Retrieval Chain
- Strategies:
- MMR (Maximal Marginal Relevance) - Diverse results
- Similarity search - Most relevant results
- Configure
k(number of documents to retrieve)
5. Conversation Memory
- Use
ConversationBufferMemory - Maintain chat context
- Remember previous questions/answers
6. Prompt Template
- Custom system prompt
- Instruct model to:
- Use provided context
- Cite sources
- Admit when unsure
7. Streaming Responses
- Real-time token streaming
- Better user experience
- Show progressive answers
8. Error Handling
- Fallback responses
- Handle API failures
- Rate limiting
9. Source Attribution
- Return source documents
- Include page numbers/URLs
- Transparent information sources
Implementation
Provide code for:
Indexing Phase
1. Load documents
2. Chunk documents
3. Create embeddings
4. Store in vector database
Query Phase
1. Accept user question
2. Retrieve relevant documents
3. Generate answer with context
4. Stream response
5. Return sources
Language
Use TypeScript or Python
Requirements
- Production-ready code
- Type safety
- Error handling
- Well-documented
Tags
langchain
rag
vector-db
llm
Tested Models
gpt-4-turbo
claude-3-5-sonnet