LangChain Tool-Calling Agent

ai_agents
TypeScript
architecture
mentor
Remix

Build an AI agent that can use custom tools and function calling with LangChain.

12/8/2025

Prompt

Build a production-ready LangChain tool-calling agent with custom tools and function calling capabilities for the following specifications:

Agent Overview

  • Agent Name: [e.g., ResearchAssistant, DataAnalyzer, CustomerSupport]
  • Agent Purpose: [What does this agent do?]
  • Primary Use Case: [Main task or workflow]
  • Runtime Environment: [Node.js / Deno / Browser / Edge Runtime]
  • Deployment Target: [Vercel / AWS Lambda / Docker / Local]

LLM Configuration

  • Primary Model: [gpt-4-turbo / gpt-4o / claude-3-5-sonnet / claude-3-opus / gemini-pro]
  • Fallback Model: [Specify or None]
  • Temperature: [0 for deterministic / 0.7 for balanced / 1.0 for creative]
  • Max Tokens: [Specify limit or use default]
  • Streaming: [Yes / No]
  • Model Provider: [OpenAI / Anthropic / Google / Azure / Custom]

Custom Tools

Define 3-8 custom tools for the agent:

Tool 1: [ToolName]

  • Purpose: [What this tool does]
  • Input Schema:
    • [param1]: [Type] - [Description]
    • [param2]: [Type] - [Description, optional/required]
    • [param3]: [Type] - [Description]
  • External API: [API endpoint if applicable / None]
  • Authentication: [API key / Bearer token / None]
  • Output Format: [JSON / String / Number / Boolean]
  • Error Handling: [How to handle failures]
  • Example Usage: [Sample input that would trigger this tool]

Tool 2: [ToolName]

  • Purpose: [What this tool does]
  • Input Schema: [List parameters with types and descriptions]
  • External API: [API details or None]
  • Authentication: [Auth method]
  • Output Format: [Return type]
  • Error Handling: [Failure strategy]
  • Example Usage: [Sample input]

Tool 3: [ToolName]

  • Purpose: [What this tool does]
  • Input Schema: [Parameters]
  • External API: [API or None]
  • Authentication: [Auth method]
  • Output Format: [Return type]
  • Error Handling: [Failure strategy]
  • Example Usage: [Sample input]

[Continue for 3-8 tools total]

Agent Behavior

System Prompt

  • Persona: [Professional / Friendly / Technical / Custom]
  • Tone: [Formal / Casual / Concise / Detailed]
  • Instructions: [Key behavioral guidelines for the agent]
  • Constraints: [What the agent should NOT do]
  • Output Format Preference: [Markdown / Plain text / JSON / Custom]

Tool Selection Strategy

  • Tool Usage: [Always use tools / Use when needed / Prefer direct answers]
  • Multi-tool Workflows: [Can chain multiple tools / Single tool per query]
  • Tool Priority: [Order of tool preference if multiple apply]
  • Fallback Behavior: [What to do if no tool matches]

Memory & Context

  • Conversation Memory: [Full history / Last N messages / Summarized / None]
  • Memory Type: [BufferMemory / BufferWindowMemory / SummaryMemory / None]
  • Context Window: [Number of messages to retain]
  • Persistent Storage: [Redis / Database / File system / None]

Input/Output Handling

Input Processing

  • Input Validation: [Strict / Lenient / None]
  • Input Sanitization: [Required / Optional / None]
  • Supported Input Types: [Text only / Text + Files / Multimodal]
  • Max Input Length: [Character or token limit]

Output Formatting

  • Response Structure: [Free-form / Structured JSON / Markdown / Custom]
  • Include Tool Traces: [Yes, show tool calls / No, hide internals]
  • Include Reasoning: [Yes, explain steps / No, just results]
  • Citations: [Include sources / Not needed]

Error Handling & Reliability

Error Scenarios

  • Tool Failure: [Retry / Skip / Fallback / Abort]
  • API Rate Limits: [Queue / Exponential backoff / Fail gracefully]
  • Invalid Tool Inputs: [Auto-correct / Ask for clarification / Use defaults]
  • LLM Errors: [Retry with fallback model / Return error message]
  • Timeout Handling: [Max execution time per tool / per agent call]

Logging & Monitoring

  • Logging Level: [Debug / Info / Warn / Error]
  • Log Tool Calls: [Yes / No]
  • Log LLM Interactions: [Yes / No]
  • Metrics Tracking: [Token usage / Latency / Tool usage / None]
  • Tracing: [LangSmith / Custom / None]

Advanced Features

Tool Capabilities

  • Parallel Tool Execution: [Yes / No]
  • Tool Result Caching: [Yes with TTL: [DURATION] / No]
  • Dynamic Tool Loading: [Load tools at runtime / Static only]
  • Tool Permissions: [All tools always available / Conditional access]

Agent Enhancements

  • Self-Reflection: [Agent can critique its own outputs / No]
  • Planning: [Multi-step planning before execution / Direct execution]
  • Human-in-the-Loop: [Require approval for certain tools / Fully autonomous]
  • Guardrails: [Content filtering / PII detection / Custom rules / None]

Integration Points

  • Webhooks: [Send results to webhook URL / Not needed]
  • Database Integration: [Store conversations / Query database / None]
  • External Services: [List any services to integrate with]
  • File Handling: [Read/write files / Upload to S3 / None]

Environment Configuration

Required Environment Variables

OPENAI_API_KEY="..."
[PROVIDER]_API_KEY="..."
[EXTERNAL_API]_KEY="..."
[DATABASE_URL]="..." (if applicable)
[REDIS_URL]="..." (if applicable)

Optional Configuration

  • Rate Limiting: [Requests per minute / None]
  • Concurrency: [Max parallel requests]
  • Timeout: [Max execution time in seconds]

Code Generation Requirements

Generate a complete LangChain tool-calling agent including:

  1. Project Setup:

    • package.json with all LangChain dependencies
    • TypeScript configuration (tsconfig.json)
    • Environment variable template (.env.example)
    • README with setup instructions
  2. Tool Definitions:

    • All custom tools using DynamicStructuredTool
    • Zod schemas for input validation
    • Async functions with proper error handling
    • Type-safe tool implementations
    • API integration code for external services
  3. Agent Configuration:

    • LLM initialization with specified model
    • System prompt with persona and instructions
    • Tool-calling agent creation
    • AgentExecutor setup with tools
    • Memory configuration (if specified)
  4. Agent Logic:

    • Main agent invocation function
    • Input preprocessing
    • Output formatting
    • Error handling and retries
    • Logging and tracing setup
  5. Utilities:

    • Helper functions for common operations
    • Type definitions for inputs/outputs
    • Validation utilities
    • Error classes
  6. Integration Layer:

    • API endpoint wrapper (if web service)
    • Streaming response handler (if streaming enabled)
    • Webhook integration (if specified)
    • Database connection (if persistent storage)
  7. Testing Examples:

    • Sample invocations demonstrating each tool
    • Example conversations showing multi-turn interactions
    • Edge case handling examples
  8. Documentation:

    • Inline code comments
    • Tool usage documentation
    • API reference for custom tools
    • Deployment instructions

Output production-ready TypeScript code following LangChain best practices with:

  • Type-safe tool definitions using Zod
  • Proper async/await error handling
  • Structured logging for debugging
  • Modular, reusable tool architecture
  • Clear separation of concerns
  • Comprehensive input validation
  • Graceful degradation on errors
  • Token usage optimization
  • Secure API key management

Tags

langchain
tool-calling
function-calling

Tested Models

gpt-4-turbo
claude-3-5-sonnet

Comments (0)

Sign in to leave a comment

Sign In
LangChain Tool-Calling Agent | vibeprompt.directory